Tunnel geomechanical parameters prediction using Gaussian process regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Clustering Parameters Using Gaussian Process Regression

We propose a method for estimating the clustering parameters in a Neyman-Scott Poisson process using Gaussian process regression. It is assumed that the underlying process has been observed within a number of quadrats, and from this sparse information the distribution is modelled as a Gaussian process. The clustering parameters are then estimated numerically by fitting to the covariance structu...

متن کامل

Solar Radiation Prediction Using Temporal Gaussian Process Regression

Solar energy is an important source of renewable energy that can be harnessed using a range of evolving technologies such as solar heating, solar photovoltaic, solar thermal energy, solar architecture and artificial photosynthesis. The harnessed solar energy can be used in a wide range of applications like electricity production, fuel production, agriculture planning, water heating, transport, ...

متن کامل

Prediction Interval Modeling Using Gaussian Process Quantile Regression

In this thesis a methodology to construct prediction intervals for a generic black-box point forecast model is presented. The prediction intervals are learned from the forecasts of the black-box model and the actual realizations of the forecasted variable by using quantile regression on the observed prediction error distribution, the distribution of which is not assumed. An independent meta-mod...

متن کامل

Prediction of Length-of-day Using Gaussian Process Regression

The predictions of Length-Of-Day (LOD) are studied by means of Gaussian Process Regression (GPR). The EOP C04 time-series with daily values from the International Earth Rotation and Reference Systems Service (IERS) serve as the data basis. Firstly, well known effects that can be described by functional models, for example effects of the solid Earth and ocean tides or seasonal atmospheric variat...

متن کامل

Prediction of Mechanical Lung Parameters Using Gaussian Process Models

Mechanical ventilation can cause severe lung damage by inadequate adjustment of the ventilator. We introduce a Machine Learning approach to predict the pressure-dependent, non-linear lung compliance, a crucial parameter to estimate lung protective ventilation settings. Features were extracted by fitting a generally accepted lumped parameter model to time series data obtained from ARDS (adult re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning with Applications

سال: 2021

ISSN: 2666-8270

DOI: 10.1016/j.mlwa.2021.100020